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ABSTKACT

Originally, the techniques used by operational research tesms- were borrowed
from other scientific fields. However, the scope of problems addressed by
this new discipline soon led to the devslopmeat of special analytic methods,
including such now familiar terms as linear programming, game theory,
dynamic prograrming, queueing theory, and so forth.

This growth was accelerated by the parallel development of the high-speed
digital computer and the modern concepts of soiution algorithms and simulation
models. When computational storage and speed were limicted, emphasis was on
the exploitation of a problem's special structure; as capabilities have
expanded and costs have diminished, emphasis has shifted to the problems of
data management for larger-scale problems. Efficient data-structure methods
have led to new methods for "unsolvable" combinatorial problems.

Concurrently, there has been an explosion in the theoretical literature.
Specialty journals flourish in the various methodological specialties, and
conference offerings have grown to an unwieldy size. Most major universities
now offer course degree programes in O.R., based on topics which were
unknown twenty years ago, and using a wide variety of available textbooks.

Furthermore, it is increasingly difficult to draw a firm line between O.R.
and other disciplines, as successful techniques are routinely taught and
used in their fields of application, including a variety of new disciplines
such as transportation and urban planning, waste management, enexrgy amnalysis
environmental engineering, health care systems, atc. O.R. methods have
also had a large influence on theoretical fields, such as mathematics,
statistics, and ecounomics.

Recent developments in selected methodological areas are surveyed to
indicaty the variety and sophistication of 0.R. techniques, and current
research trends. Selected bibliographic references provide an introduction
to the techniques, or tc important new developments.

In conclusion, the current crises which have appeared within the profession
are discussed, and the prospects of this now-mature field are analyzed.
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THE ANALYTIC METHODS OF OPERATIONS RESEARCH
by

William S. Jewell

1. INTRODUCTIOR

When I received the invitation to survey the analytical tools of
operational research for this Meeting, I was extremel; pleased - first
of all, for the kind thought that I was qualified to do so; and, secondly,
for the opportunity to visit again the country where operational research
began over chirty years ago. However, as I considered the explosive
growth of the field since that time, I became apprehensive at the thought
of trying to covering so diverse a topic in a Fgw words.

Perhaps some of you remember the actual sltuation in the middle of
the 50's -~ rhe time at which most methodology began to be developed. Your
Operational Researcn Society was about ten years old, the Operations
Research Society cf America was about five, and the Institute of Managemen*
Science had just been organized. The RAND Corporation had just published
a book entitled, "A Million Random Digits with 100,000 Normal Deviates"
for use in Monte Carlo simulation; an electro-mechanical device called
Queuiac was promoted in the ORSA Journal for emulating queueing problems.
The transportation and travelling-salesmsn problems had just been described,
and neologisms like "sub-optimization" and "cost-effectiveness analysis"
were appearing. At M.I.T., where I was pursuing graduate studies in
engineering, there was no formal curriculum in operations research; our
only texts were brief notes by P. M. Morse, G. Ximball, B. O, Koopman,

G. P. Wadsworth and others, RAND reports, "The Theory of Games and

Economic Behavior," by .J. von Neumann and O. Morgenstern, and an esoteric
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2 paperb;ﬁk by Charnes, Cooper, and Henderson on the optimal mixing of
: )

é peanﬁ{s and cashews. Our computer used vacuum tubes, and one walked

; inside it for repairs; we solved what were considered very large trans-
portation problems (60 plants, 300 customers) in about thirty minutes.
Capabilities improved with the arrival of the first commercial computer,
but another student's simulation of vehicular tuanel traffic took longer
than real time! 1In 1955, I attended my first meeting of ORSA at Columbia
University. There were two theoretical papers by R. E. Bellman and

J. M. Danskin, eight application papers on production scheduiing and urban
services, plus 24 contributed papers - I believe it was the first time

| that two pa-allel sessions were required to cover all the papers in one

day. Even by 1958, a comprehensive bibliography on operations rescarch
only contained 3,000 entries {Case, 1958).

In contrast, the next ORSA/TIMS mz2eting in Miami in November, 1976,
will, over three days, have 160 sessions with about 980 papers! There
are probably over 400 texts in the methodologies of 0. R. now in print,

3 and a continually increasing number of specialty journals. A good bib-

T

pts TN

Jiography on any of the subfields of $. R. can easily include several

thousand entries. Over 40 colleges and universities in the United States

O
LS, S

now offer some form of 0. R. education; over 20 of these have named
departments. The technical capabilities of computers seem boundless,

but our propeasity to enlarge the boundaries and the scale of the models

keeps pace, as we tackle national, international, and even global problenms.

In every dimension, the field seems limitless. '

L

My plan of attack to reduce the survey to manageable size is as fcllows:
é; First of all, I will describe briefly the major methodological areas,

ard present what I consider to be important recent trends, including




references which secm representative and interesting, provide convenient
summaries; or which mighr serve as gateways for further reading. I am
grateful to my many colleagues who have helped to organize this biblio-
graphy, however, the fiaal selection is mine, and no claim tc completeness
or showing historical priority is made.

Some methodological areas, such as control theory, are already too
large to survey; other areas were excluded because they seem to have reached
deadends (gawe theory, information theory) or because their scientific
basis is still being developed (simula:ion, management information systems,
urban and public systems). Except for a brief section on business models,
applications of methodologies could, unfortunately, not be included in
this limiived space.

Finally, I would like to conclude by descrihing the influence of 0. R.
methodologies on oth:r disciplines, considering some of the crises facing
the profession, and giving my perspective on the prospects for this now-~
vature field,

Operational research is, ahowve all, an optimizing science, and we begin

with a discussion of optimizazion methods.
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2. UNCONSTRAINED OPTIMIZATION

Uncoastrainzd maximization (minimization) is the problem of finding a

* *
value x «of a vector Xx = {xl,xz, cees xn] such that £(x ) > £(x)

*
(or f(x ) < £(x)) for all =x , where f is a given function, usually
analytic. Yost optimization methods require that £ have certain smooth-

ness and shape properties, such as continuity and conczvity (convexity),

50 that if an x* satisfies the necessary conditions for a lscal optimum,
vf = [af(x*)/axi (1 =1,2, ..., n)] £ 0 plus Znd-order conditions, then
x? is also globally cptimal. This enables one to use local exploration
to lead to the global optimum.

Assuming that the gradient Y£ {s easy to calculate, the most popular
algorithms are based on the idea of steep ascent (descent) -~ that is, from
the current solution, xo , find a new solution by moving with (against)
the gradient, x1 = xo + 8Vf , where S is a positive definite matrix,
varying from step to step, which may have only diagonal terms (representing
current step size), or may be more general, attempting to avoid the slow
convergence often encountered near x* . These methods are by now quite
efficient for problems with several hundred variasbles. If derivatives cannot
be easily computed, then a variety of direct search methods are available.
Theoretical details aze in (Luenberger, 1973} and (Avriel, 1973); numerical
comparisons may be found in (Himmelblau, 1972); (Powell, 1970, 1971)
has convenient surveys; (Wilde, 1964) details one-dimensional search
procedures.

If equality constraints are present, then one can, in principle,
use Lagrange multipliers to convert the problem to an unconstrained optimum,
and apply gradient methods (Kwakernaak and Strijbos, 1972), (Avriel, 1976).

Alternatively, one can use ronlinear programming methods, described below.




Unconstrained optimization methods are useful primarily in the
simple pedagogical models, or in engineering design problems. Their
main vaiue is as a foundation for more complicated methods where equality

or irequality coustraints are present.




3.

LINEAR PROGRAMMING

Constrained linear optimization is, by any measure, one of the most
successful “new" rcethodologies of operational rasearch. Tue problem is to
optimize a linear function subject to linrear inequslity and equality

constraints; in the usual canonical form:

G-1) Ax =%

x>0,

where x =202 ¢ ore n-vactars, b is an mvector, aad A fisan mxn
ratrix (m < ) . In this form, linear inequalizy constraints have been
converted to equalities through the addition afd subtv..tion of non-
negative Yslack" variabies, ané incorporatev into Ax =b . Individual
variable constraints, such as if :_x3 j‘uj » can also be so incorporated,
but most computer codes have special features to handle thez separar-ly,
so as to keep down the dimension 92 A .,

The success of linear progra=cing iz due first of 31l to its usefulness
as a medel. The accounting world is full of linearity assusptions as %o
the cocis of zesources consumed and the value 51 goods and services produced,
so that c:x is a good approxication to most management objectives.
Many production tecimologies are also linsar, at least to a first approxima-

tion, so that portions of A which represent conversion froz activity j

to resource i need only an esticatc of the couversion coefficient a,

5 T
other portions of A asually have large nuzbers of zero and unity coeffi- ’
cients because of the large ru=ber of comservation or "bookkeeping"

reiations between different activities - these are intrinsically linear.
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Finally, upper and lower bounds (especially £ = 0) on the activity
lesels, x , are characteristics of our finite world.

The optimal solution to (3.1) is determined almost completely by
the coastraints. If there &re no ties for the optimal solution, x* s

one can show that the optimum is determined by specifying a basic set B

of m variables, x® = {x. t j € B} . The values of these variables
<4

are determined by solving the square system

(3.2) BxD = b ‘

where B is the set of m columms of A corresponding to B ; these must

L rw

represent m linear independent vectors in m-space (a basis) so that

det B-# 0 . These values will, of course, be feasible only if xB >0 (and

B _ - ® . .
usually %’ » J) . 7The remainder of = is determined by setring the n - n

nortbasic variables, xg = {xi i3 &£ B} , ro zero. In geometric terms,

selecting the n - m nonbasic variables determineés a conner, or extreme ;
point of the convex pclyhedron of feasible solutions, {Ax =b , x> 0} .

Since there are (‘n .r: m} = (;) ways to select a basis (although not all
in |

Loy

) . . *
result in feasible «x ), this characterization of x  suggests there are a

TR R T L

combinatorial number of basic feasible solutions to explore.

2w

However, Danrtzig (1963) and his coworkers were able to show that an

e
-

ascent (descent) method, which proceeds from one extreme point of tha

T S IE RN

k- constraint space to & better extreme point, is a computationally efficient

iy A i WA AT, o Y

RN

procedure, taking on the order of 2m - 3m steps, rather than some
8 combinatorial number related to the number of variables, n . This fertuitous

E: roperty of the "simplex method," established through computational experience,
12 |4 y

is the second reason for itz popular.ty. Even today, there is no satisfactoxy

& theory for the rapid convergence of this method; theoretical bounds on thre




number of iterations required rre extremely large, except for a few
special problems.

The details -of the simplex algorithm are quite straightforward of
interpretation, although the actual procedures seem strange at first glance.
To avoid continued re~inversion of different m x m matrices, Bl,Bz, ves g
to solve (3.2) successive bases are chosen which differ only in one
member; by ueing the Gauss-Jordan reduction method on the full matrix A
(with b adjoined), one can easily check that the current and forthcoming
extremal solutions are feasible. To be assured that this move increase
(decreases) ng » the current solution is effectively substituted -back
into. the functional, and local gradients can be read off directly from
the new coefficients in front of the nonbasic variables. A "pivot step"
(application of Gauss-Jordan reduction to one column of data) then displays
Che next basic feasible golution.

In economic tesms, the choice of a "good" direction is made by imputing
the -unit profits cB of each current by basic activity back to m unit
prices y = [yl,yz, sy ym] associated with each consiraint by solving the
dual systenm BTy = cB ;s the local vector of gradients leading away trom the
current extreme point is then gotten from c¢ - A?y . This leads to the
conceptually elegant theory of duality, in which it is shown that (3.1) is

equivalent to another linear program:

Min (Max) bTy

ATy > (¢

y unrestricted,

in the sense that, if omne program has a finite optimum, then so does the




other, and bTy* = cTA* . The dual variables, y , are essentially extended
Lagrange mulcipliers. Optimality is recognized by the "complementary
slackness" condition, (x*)T(ATy* -¢)=0.

There are many different elabcorations upon the basic simplex method
that purport tc solve problems with special data in mor: efficient ways,
or tn fully .xplcit special structure or computational capcoilities, or
vhich carry out post-optimal sengitivity analyses. Full details on this
by now classical topic may be found in almost any of the approximately 200
texts (Gerber, 1974) on linear programming, sach as (Dantzig, 1963),
(Gass, 1958), (Simonnard, 1966). FORTRAN and ALGOL programs are given in
(Kiinzi, Tzschack, Zehnder, 1971). See also the comments in (Woolsey,
1273).

There is a great deal of difference between the classroom representa-
tions of linear programs and the actual computer codes (a term to avoid
confusion with "programs') which solve them. An l.p. code must not only

accept and convert a variety of input constraints, it must "

get started"

{by itself, or from a prior solution), reject unfeasible problems, and

carry out a variety of post-optimal sensitivity analyses. Furthermore, as
the size of successful l.p. solutions is increased, there has been increasing
pressure to further increase the capabilities of advanced programming systems.
This means that a great deal of attention must be paid to what we might

call the computer science aspects of the program: allocating data between
different storage media, and moving it about rapidly; efficient methods

of storing inverses of sparse matrices, updating them during the pivot to

a new extreme peint, and cleansing them of accumulated round-off errors;

and finding the best compromise between moving in the direction with steepest

gradient or the one with greatest change in ch . Details may be found

e e e
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in (Orchard-Hays, 1968), (Beale, 1967 and 1970), (Bonner, 1969); (Tomlin,

1972) and (White, 1973) have more recent surveys.
For small-scale linear optimizatior, we are clearly reaching a point

of diminishing returns on solution efficiency. A problem with m = 200

which cost $1,000 to solve in 1956 can now be turned out for under $2C;

most of this improvement is due simply to the generally decreasing cost of

digital computation, which trend will no doubt continue. However, the

demand for increased computational capabilities continues unsatisfied,

as programmers extend the size and boundaries of problem formulationm.

Currently, problems with m = 2,000 are routinely solved, and there are

large-scale systems which can handle m > 10,000 ; since there is no theory

to predict simplex method efficiency, evaluation of new algorithms must

follow computational trials. Occasionally there are surprises; for

example, Harris (1973) reports a reduction by factors of 2 to 6 in the

number of iterations needed to solve problems with m = 2-5000 , by

using the concept of a fixed datum basis in which to compute and compare

gradients. ;
One way of handling larger size problems to take advantage of any

special structure in the constraints. As mentioned above, it is trivial

to include individual constraints of the forms £j £%,.<u

i="3"

scheduling and distribution probiems, one encounters constraints of the

In many

form

< L%y

- jeJK

vhere the {JK} are nonoverlapping subsets of the variables. Problems with

a large percentage of constraints of this type have important savings in

computer time by using the generalized upper bounding technique of Dantzig

and Van Slyke (1967), and recent l.p. codes include this capability.




Large-scale multi-time or multi-cector planning models have highly
structured matrices A , with "block-angular" and ''staircase" nonzero sub-
matrices (often with repetitive internal structure), and zero elements
elsewhere. For many years it was thought that there might be efficiencies
by using the simplex method separately on each subproblem, periodically
reconciling the linking constraints in an overail simplex approach; how-
ever, in spite of the large literature on these methods (see, e.g. (Lasdon,
1970)), the coding techniques are quite difficult and specialized to the
problem structure, and this approach ig not now an important contender for
these problems.

Another conceptually appealing approach to large~scale l.p. prshlems
which have many separable subproblems linked together by a few "master"
constraints has been the decomposition method osf Dantzig and Wolfe (1960).
In this method, different values of artificial objective coefficients are
"sent down" to the subproblems, which are solved individually (and hence
efficiently), producing a variety of extreme point solutions for each subset
of variables; the '"master program" is then solved to satisfy the linking
constraints by mixing these extreme-point "plans" in an optimal way. The
dual solution to the master program then produces another set of surrogate
goals for the subprograms, which in tern provides other plans for the master
optimization. Perhaps the most important feature of this approach is that it
quantifies the conditions under which partial or completely decentralized
eccnomic planning can take place (Bawnmol and Fabian, 1964). However, as a
computational strategy for purely linear programs, decomposition has proven
disagnointing. It is still a useful approach when the subprcblems are not

linear progranms (see the cutting-stock problem below) or are soluble by

special procedures (such as transportation problems), or are linearization
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approaches to nonlinear programming; Lasdon (1970) has several applications

i
i )
i)

of the decomposition approach.

In a recent ORSA/TIMS Panel (entitled "Is Mathematical Programming
Moribund?"), D. Smith described the four eras of mathematical programming.
In the '50s, when the simplex method was new and incompletely understood,
the basic problem was to write l.p. todes for the different computers;
because of size and speed limitations, emphasis was also placed on develop-
ment of special-purpose algorithms for special model structures. By the
'60s, fast commercial computer codes were available for production use, and
the botcleneck was in the translation of output into the management process;
feastures such as post-optimal sensitivity analysis were added, and more
attention paid to simplified data entry, and to summary report generators.
As computational capabilities and management sophistication have increasei
in the '70s, we find model boundaries expanding, and nonlinear, integer, and
decentrazlized optimization capabilities are being added to the computing
systems. Finally, as we head into the '80s, the routine solution of ex-
tremely large problems raises enormous questions of data-base management:

how will data be gathered, stored? How will it be checked, cleansed,

and updated? Who will certify the results of the optimization and what

D e e o

methods will be used?




4. NONLINEAR PROGRAMMING

! . Optimization problems with nonlinear objective functions and/or

nonlinear inequality constraints are of increasing importance in

operations research.

The earliest models were of chemical, metallurgical, and hydraulic/gas

transmission processes, where the basic transformations are nonlinear,

and in engineering design problems (Duffin, Peterson and Zener, 1967), .
a,
(Zener, 1971), where empirical "posynomial” forms, I xil , are

encountered. Quadratic objectives arise naturally in least-squares

approximations (Golub and Saunders, 1970), in electrical networks

(Dennis, 1959) and control applications (Luenberger, 1972) where energy

dissipation is minimized, and .n location and space assignment problems

Bt Al i e i el

where Euclidean distance is the measure of optimality. Even with linear

economic assumptions, the system obiective may be profit-per-unit-
(item, time, trip, etec.), giving a linear fraction, the ratio of two
linear forms, to be optimized. In sn-called stochastic programming,
the objective form includes the expected cost of compensatir; fnr the

random effect of a decision (Sengupta, 1972), (Vajda, 1972). Nonlinear

constraints arise from similar rcassdszat .ons.

el

In order to retain the desirable property that a local optimum is

also a global optimum, one usually restricts investigaticn to the so-

i

called convex programs, those that can be put in the form:

L . R . A PR
Al i o i ol s

Max (Min) £(x)
gj(x)iﬂ G=12, ..., p)
(4.1) Ax = b

b bl ol s Wl sl

*x -0
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)
j‘ (see Lasdon, (1970)). The more direct "approximation programming"
7 approach replaces nonline.., functioms by their first-order Taylor .f
j series approximation ex.i... «t the current solution, x(t) ; under :

certain conditions, the. .7 &t »0lution to the current 1l.p. leads

+'\
to a new estimate x(t L

where another approximation is made, and
so on. The (generalized) '.- duceil-gradient" algorithm partitions the
variables into basic and n-nvasic sets, as in the simplex algorithm,
and consider the optimizat.on only in terms of the latter, thus
"projecting the gradient." The "cutting-plane” algorithms turm a

3 problem into a linear objective with nonlinear constraints, and then !

successively bound or support the desired region by a sequence of

hyperplanes. Details and further references ¢n these and other simplex- ‘
like methods may be found in (Beale, 19€7), (Himmelblau, 1972) and

(Avriel, 197{'. Most of these algorithms have rather slow convargence

K since local movement must be restricted to guarantee feasibility or
convergence. The exception is the generalized reduced gradient method
which seems to remain amorg the best nonlinear codes (Colville, 1970).

Turning now to the methods which are more closely related to

I
[P

unconstrained cptimization, we note that, if we have a current solution

(t)

x which is in the interior of the solution space, we can use a steep

ascent methed, moving in a sequence of straight-line steps until the

o A e

optimum or a constraint is reached. If the current scolution lies on
the boundary of a constraint (or if the original formulation has linear
equality constraints), then a (locally or globtally) feasible direction {

must be chosen. In the "gradient projection" approach, due to J. B. '

Rosen, th: gradient is proiected onto the a2ctive onstraint hyperplanes,




and a step is taken in the (reduced) steepest descent direction, until

the nptimal point along this line is reached, pessibly with another

constraint becoming active; nonlinear constraints cau be handled by

approximation, but then extra steps to re-enter the fessible region

may be needed, On the other hand, the "feasible directions" methoéd,

due to G. Zoutend 'k, determines only directions that are totally
feasible, but has difficulty accommodating lin_ar equality constraints.
Both of these methods have been considerably elaborated and improved
by coupling them with modern methods of steep ascent. A recent survey
of the many possible alpgorititms is in (Avrisl, 3976).

Penalty function methods operate differently, by incorporating
the constraints into the functional in various ways, and using unconstrained
optimization techniques. Exterior penalty functions add nonlinear costs
vhenever the solut n trajectory lszves the feasitle region. In the
more popular interior penalty methods, nonlinear “barriers" are placed
in the interior of the feasible region to keep the optimal solution
away from the boundaries; thess barriers are slowly relaxed so that
the sequence of unconstrained optima coaverges to x* . For example,
if all the constraints are of the form gi(g) > 0 , one would maximize
£(x) - A z gzl(x) fox a decreasing sequence of A . This approach
has been extensively studied by Fiacco and MecCormick (1968), and seem
to be rhe most successful way to tackle problems with strongly non-
lineer constraints (McCormick, 1971). See alse (Avriel, 1976} snd the
numezical example in (Himmelblau, 1972).

An important special class of nonlinear programs are engineering

design problems in which the objectives and constraints zre composed

ket o e
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where f(x) 4s a concave (convex) function, and each nonlinear

constraint is-an inequality, formed only from concave functions.

This guarantees that f.he total constraint gpace is a convex region,

and that local search methods will converge, if properly set up, to

the overall optimum. Occasionally, nonconvex objectives of special

form can be handled; otherwise, one must bz content with an x*
which may only be locally best.

A glance at recent texts in nonlinear p;ogramming (¥immelblau,
1972), (Luenberger, 1973), (Avriel, 1976) reveals that there is no
single preferred method, but rather a variety of different approaches
suited to the many different special forms that (4.1) can take. The
methods divide themselves maturally into those based strongly on l.p.
techniques, those based upon unconsirsined optimization algorithms,
and specially-developed algorithms.

In the first category, we usually have no (or few) nonlinear
constraints, and only mildly nonlinear objectives. The first remark

T

is that quadratic programs, where £(x) = ¢ x +-%'xTQx and Q 1is

a negative (positive) semidefinite matrix, can be solved using wvarifants

of the siwplex method (Dartzig, 1963), (Boot, 1964). Lineay fractional

programs, where f£(x) = c*x/de is neither convex nor concave, can
be handled by treating the denominator as a parametric variable (see,

e.g. (Lasdon, 1970)). Mcre generally, we can use linear approximations

to the nonlinear functions in several different ways. The first approach

is tv use "grid linearization,” with each nonlinear function recursively

defined in terms of local piece-wise linear forms; the complete method
is related to the decomposition algorithm, and is especially simple if

the nonlinear function are of separable type, f£(x) = 2 fj(xJ)

.
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of posynomials. These problems, referred to as geometric programs,

have been extensively analyzed, and special-purpose algorithms developed

(Duffin, Peterson, and Zener, 1967), (Zener, 1971), (Beightler and |
Phillips, 1976). It is also possible to £ind approximate solutions

using the simplex method (Ecker and Zoracki, 1976).

Cptimality in nonlinear programs is recognized by constructing
extended Lagrangean multipliers and checking that the so~‘alled "Kuhn-
Tucker conditions" (similar to complementary slackness in linear programs)
are satisfied. These multipliers are essentially dual variables and
have similar economic interpretations; yet, duality theory does not
seem to play a large role in monlinear ceooputations. Part of the
difficulty is that there are many different possible dual formulations
to nonlinear programs, and, in contrast to l.p., the primal variables,

x , also appear in the dual programs, thus preventing their independent
solution. The other difficulty is that dual formulations may require
delicate analysis; Geoffrion (1972) illustrates some of the difficulties.
Convergence properties are also difficult to establish (Wolfe, 1970),
(Zangwill, 1969).

Nonlinear programming wethods are finally beginning to sort themselves
out after a period of diverse theoretical development. What is needed now
is extensive computational comparison on large-scale practical problems

to further match method to problem; it is probably too much to hope that

a universally efficient method will ever be found.




5. _NETWORK FLOW MODELS

If one had to identify the most popular application of linear

programming, it would certainly be the network flow models, first in-

-
o p—

vestigated systematically by Ford and Fulkerson (1962). 1In the

prototypical problem, we imagine a connected network made up of nodes

i=1,2, ..., N, and A directed arcs, each labelled by an oxdered

pair representing the start and terminal nodes for that arc. Thus,

arc (1,j) starts at node i , ends at node j , and we suppose it

fi has flow x‘j , limited by upper and loweg capacities, lij and uij s

and contributes a profit (cost) cijxij to the total operation. The

-optimization problem is then to find a maximal profit routing of flow:
b Max (Min)

(5.1)

TN S T .
P iy

Here q, > 0 [qi < 0] represents external flow into {out of] the
network at node i ; the equality constraints represent "Kirchcff law"
conservation at each node — summations are understood to be only for
arcs actually connected there.
(5.1) is clearly a linear program, but of very special structure, [
since the constraint matrix only contains 0's, + 1's, and ~ 1's, and

E exactly one of each of the latter for each variable. One can show

;; that this implies:




(1) There is exactly one redundant conservation equztion, and for

solvability } q; = 0;
(2) The optimnl solution is got by adding and subtracting the
houndary flows {qi} , and is thus integral if they and the
capacities {lij’uij} are integral;
{3) The 1.p. basic solution is related to a network coanfiguration
callad a tree - a subset of N - 1 arcs which connects ali the
nodes, and has no loops;
(4) '"Pivoting" from one extreme point soluticn to anosther is related to
passing flow around a loop in the network, so the only computation labor

is to find a "good" loop and stay feasible.

Because of this simplicity in the optimal solution, it has been possible
to develop fast, specizl-purpose computer codes which can handle much
larger network formulations than could be handled by a general l1.p.
code - 104 nodes #nd 106 arcs being handled routinely (Glover aad
Klingman, 1975).

(5.1} includes a variety of very useful simpler models. For
example, 1f the network consists only of all possible links between
one set of nodes with 4y » 0 (the plants) and another set of nodes
with 9 < 6 (the customer), we have the classical "transportation
problem"; making the two vets equal in size and all q; =+ 1 further
reduces (5.1) to the "assignment problem."” For a general network, if
ta (5.1) Cij = 1 for a certain arc (i,j) , zero for all others,
thin we have the "maximum (minimum)-flow problem," which can be solved

by a simple "labelling method."” (Ford and Fulkerson, 1962); conversely,

if all q 0 , but lij = “ij

= 1 for a certzin arc (i,j) , then




il

we have the "longest (shortust)-route problem," for which a varizt

of special-purpose algorithms are available (Dreyfus, 1369). In fact.
most algorithms for the general netwsrk problems are alternate
applications of max-flow and shortest-route procedures to different
arcs in the network. Easy modelling extensions iuclude dynamic flows,
capacities on nodes, paracetric studies {etc.) (Fulkerson, 196€),
(Price, 1971).

The literature is full of a number of cunfusing referencas to
Yprimal-dual” [“Ford-Fuikerson"], "dual," "simplex,' and "out-of-kilter"
methods. These are, in fact, historical variants of the same extrexe
point. method which different only in starting procedures, selection of
new varinsbles to enter the basis, treatrment of initial iInfeasibilities,
etc. Nevertheiiss, there seems to be considerable difference in computa-
tional efficiency of the different approaches, and upon the ranner in
which labelling information is stored; see the many studies of Glover
and Klingman and coworkers (1974zj, {1974b), (i)75). This is important
because of tke mauny general optimization wmodels which have netwerk-{low
substructures.

Incidentally, linear network models differ freo general linear
progrars in that reasonable bounds on the number of iteration: can be
obtained (Cdmonds and Karp, 1972), (Dreyfus, 3969). Zadeh (1975a),
(1973b) gives sore worst—case examples.

The linear progranm duzl to (5.1) has constraints of the form
Yy < Yy > (<) €44 where the dual variables {yi} have zn interesting

physical interpretation as node potentials, obeying Kirchoff's potentfal

law, Yg - yj = cij , for ares in the optiwmal basic solution.
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This dual program also arises directly in the eritical-path gcheduling

models (see below).

Because of the success of the initial special-purpose algorithvs,
several extensions of flow models have been proposed, with as much
of the "on the network" simplicity retained as possible. For example,
in "networks with gains," we imagine that each arc (i,j) has a
multiplier k

which converts the incoming flew x to an cutput

ij 1]

flow k*jxij ; this formulation includes a variety of interesting new

applications (Jewell, 1962), but requires complicated labelling schemes,

" since the solutions are not integral, ana ronservation in~the-large

is not satified. Maurras (1972) reports on receut computational ex-
perience; Glover and Klingman (1973) show thar some networks with
multipliers can, in fact, be reduced by scaling to ordinary networks,
and Truemper (1976) discusses scaling in general.

Another extension studied in great detail is”thé multicommodity
flow problem, in which several types of flow pa;s without mixing over
the network to satisfy their own boundary requirements, but are
mutually constrained by each arc's total flow capacity. (Ford and
Fulkerson, 1958), (Jewell, 1966). Even with integral constraints, the
optimal answer may require fractionmal allocations of capacity. Models
of this type are important in communication networks (Frank and Frisch,
1971) and road traffic problems (Potts and Oliver, 1972). Recent
algorithws are given hy Hartman and Lasdon (1972) and, with computational
experience, by Grigoriadis and White (1972).

It should be mentioned that quadratic prefit (or loss) on arcs

can easlily be handled; the procedures are a mixture of linear flow

procedures and the methods of electrical circuit theory (Dennis, 1959).

R
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A varic  of other =xtensions to network flows have been proposed,

but, generally, the days of developing special-purpose algorithms are

over, due to the rapidly increasing capabilities of all-purpose

mathematical programming codes.. Networks remain, however, a fruitful

avea of research for other types of models, such as stochastic flows

(Frank and Frisch, 1971), (Kleinrock, 1976) and various combinatorial

routing and covering problems (see belcw). (Bellman, Cooke, and

Lockett, 1970) give some other clever network problems.

Also in the network flow class of l.p.s are the critical-path

scheduling problems (Moder and Phillips, 1970). In this model, the

network represents the precedence relationships between the different

jobs of a project. The decision variables are dates {yi} on each

node, such that for (i,j) , there is sufficient time to complete job

(1,j) requiring time t,. ; i.e. The objective is

ij yj = yi i tij .
to minimize total elapsed time on the project. Since this i1s exactly
the dual program to a longest-route problem, the solution procedures

are trivial; however, the model has found wide-spread utility in the

construction industry.




6. INTEGER LINEAR PROGRAMMING

In many optimization problems the assumption of a continuous
decision variable is untenable and one would like an integral answer
for some or all of the variables; for instance, only an integer number
of round trips can be made by vehicles, and integral numbers of
spare parts stozked for space voyages. Variables which can only take on
values 0 or 1 are particularly useful in modelling selection processes
with an attendant fixed cost; for example, if activity j costs nothing
if not selected, and costs dj * cjxj when operated at level x, ,
0 < X LUy, then we can formulate it as part of a ("mixed") integer
program with a cost djzj + cjxj ujzj s
z, ¢ {0,1} . The {zj} might themselves be jointly constrained, see

J
(Balinski, 1965), (Garfinkel and Nemhauser, 1972a); other surveys of the

, and constraints 0 j_xj <

field axe (Balinski and Spielberg, 1969), (Greenmberg, 1971), (Garfinkel
and Nemhauser, 1972b).

The eariiest attempts to solve integer linear programs were based
on the idea of rounding-off the variables in the corresponding continuous
linear program; however, these failed because it is easy to construct
examples where the optimal integer answer is not the feasible integer
point nearest to the best 1.p. solution - in fact, can be arbitrarily
far away. Only after the initial paper of Gomory (1958) were exact
solutions possible. His idea was that of adding additional constraints
to sequentially generate the convex hull of feasible integer points;
these "cuts" remove part of the original solution space but do not
remove any integer solutions. After again optimizing using the simplex

*
method, the new non—-integral x  suggests other cuts, and so forth.

Many different methods of generating these cutting planes are now available,




but, generally these methods have slow convergence, and have been tested

mostly on problems of less than a hundred integer variables.
The most efficient methods for general integer programs are
currently based upon implicit enumeration techaiques — the so-called

"hranch~and-bound" method (Agin, 1966), (Lawler and Wood, 1966),

(Mitten, 1970) or “progressive-separation-and evaluation' procedure

(Bertier and Roy, 1964), (Roy, Benayoun and Tergny, 1970). The basic

idea can be illustrated by considering the integer program:

Max P = ch

(6.1) Ax =D

xj e {0,1,2, «.., uj} (3 =1,2, «o0, M) .

* *
An upper bound on P = ch can obviously be obtained by solving

the corresponding l.p. with the integer constraints replaced by

0 j_xj j_uj (j =1,2, ..., n) . Now, pick a certain variable to "arbitrate"
or 'branch upon" - say X, » Problem (6.1) is "separated" into u +1
distinct integer programs in which %, is fixed at its possible values
0,1,2, ..., u; 3 the objective function for each of these subproblems

can then be bounded from abovc by a linear program in which 0 g_xj f-uj

(§ =2,3, ..., n) - and these solutions are usually within a few gsimplex
steps of each other, as Xy is varied parametrically through its integer

values, To proceed, the "best choice o/ x, , in terms of the various
p

1
.
bounds on P , is taken, and a different variable is chosen for further
exploration, generating a new sequence of subproblems in which two variables

are now fixed at integer values. At successive steps, one takes the

"best' overall candidate solution, irrespective of the number of .cbitrated




variables. Under very general conditions, one can show that this procedure

terminates when the first solution with gil variables fixed is obtained.

This enumerative approach coull, in principle, require exploration of

all possible I (uj 4+ 1) solutions, but in practice behaves rather well

if good rules for the selectjon of successive variables are used., A

convenient framework for explaining the various approaches is in

(Geoffrion and Marsten, 1972). Commercial mixed-integer codes are now

undergoing extcansive computational testing, with encouraging results

for problems with several hundred integer variables and severazl thousand

constraints (Roy, Benayoun and Tergny, 1970), (Bénichon, Gauthier,

Girod«t, Hentgés, Ribidre and Vincent, 1971), (Mitra, 1973), (Forrest,

Hirst and Tomlin, 1974), It is interesting that the most successful

s0lutjons use a number of heuristic procedures, and depend strongly on

the way in which the problem is formulated (Geoffriom, 1976).

Naturally there are speedier special-purpose algorithms available

for specific models, for instance, if the l.p.s used to determine

the bounds are of the network flow type. (Balinski and Spielberg, 1969).

Geeoffrion and Graves (1974) report a successful application of an older

method due to Benders (1962) to a very large warehouse-location and

milticommodity distribution problem. Other special-purpose methods
and models are described below.
Finally, Kalvaitis and Posgay (1974) describe a very successful

commercial application of integer programming, while Woolsey (1972)

injects a cautionary note.




7. COMBINATORIAL OPTIMIZATION

The boundary between integer programming and combinatorics is

not a precise one, since many of the problems we consider here have

formulations like (6.1), with 0 or + 1 constraint coefficients.

However, combinatoric problems are generally more "puzzle-like,"

are either very simple or very difficult, and usually require special

-algorithmic development. The most important ones are related to

network applications.

To give some examples, imagine a network (or, if you prefer, a

connected graph) with A undirected arcs and N nodes. Each arc

has a positive unit cost; the total cost of "using" a certain subset

of arcs is the sum of the unit costs associated with thosce arcs.

Now consider the following different problems:

(1) Given two specific nedes, find the least-cost (shortest) path

(sequence of arcs with nodes in cozmon) from one node to the

other;

(2) Repeat (1), but £ind the 2nd,3rd, ..., kth shortest paths;

(3) Find the lesst cost subset of arcs which will connect all nodes

to each other;

(4) Find the minimal-cost tour which passes through all nodes at

least once, returning to the starting node;

(5) Find the minimal-cost teur which traverses each arc at least once;

The shortest-path problem (trivially extended to undirected arcs)

has already been discussed as a special linear program of the network

flow type; it can be solved in the order of N2 steps using a special




e

dynaunic-programmips-type algorithm; problem (2) also has an efficient

dynamic-programming forrulation. (Rreyfus, 1969).
In problem (3), one can easily show that the desired configuration
is a (spanning) tree, N - 1 arcs which connect all nodes, and has no
loops. This problem cannot be posed as an l.p., and yet is susceptible to
aimost any kind of "gready" heuristic: for example, pick the least-cost
arc, tien add to it the next-lowest~cost arc not forming a loop, then
add to thocse the uext-lowest-cost—arc not forming a loop, ... and so om,
until a tree iy obtained in at most A steps. This model is useful
in a variety of communication problems (Frank and Frisch, 1971), (Pierce,
1974).
Problem number (4) is the well-known "travelling salesman" problem,
and is fundamentally more difficult than (3). Certain general theoreus
are known (Bellmcre and Nemhauser, 1968); for example, if the unit costs
obey a "triangle inequality" (it is always cheaper to go from one city
to another in one step than in two), then the optimal tour is a "Hamiltonian :
cycle" - a circuit of N arcs visiting each city once and only once.
A variety of different approaches have been proposed for this problem: i
dynamic programming, where storage bottlenecks limit the size of the problem;
integer linear programming formulations, which reguired the addition of
ZN“l - 1 constraints - later improved by cutting-nlane algorithms; and
branch-and-bound algorithms which have variable performance depending on
the heuristics chosen. Belluore and Nemnauser (1968) provide a summary;

branch-and-bounding appears already as the best method, but only

problems with N < 10f) were solved exactly. Held and Karp (1970),




(1971) have found that sharper bounlis, derived from solving a related

epanning tree problem, can produc. important efficiencies. Their

approach has been further improvea hy Hangen and Krarup, (1974), and,

for directed arc networks, by Smith, Srinivasar and Thompson (1975);
N3.5

computation times seem to vary abocut 23 for smsll problenms,

but N = 200 is about the limit for exact solutions. (Webb, 1971)

.
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and (Lim and Kernighan, 1973) show how to cbtain good approximate

solutiona $or larger problems.

Probizm number (5) is called the "Chinese postman" problem. In

the undirected arc network where every node has an even number of arcs,

there existe an "Euler tour," a tour which passes through each are

only once; this i{s then optimal. In the contrary case, extra trips

ara necessary to pass Lhrough nodes of odd degree; this is done

through an associated integer "matching” problem for which good

computational experience is availabie (Edmonds and Johnson, 1973).

. .
R oy b vt A

Both the travelling-salesman and Chinese-postman problems zre

important as building blocks in realistic routing applications.
9rloif (1974a) has synthesized thege methods to solve a general

routing problem (in which the minimum-cost tour is to visit a subset

et A e M b

of the nodes and cover a subset of the ares); this has important
application to the problem of routing a fleet of venicles out of a

central facility, as in school-but-routing, and refuse scavenging

—

(Orloff, 1974b). See also (Bennet:t and Gazis, 1972), (Beltrami and
Bodin, 1974) and the survey in (Bodin, 1975).
The concept of choosing an optimal tour to pass through certain !

nodes or arcs of a network can be generalized to the combinatorial
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problems of "set covering," in which costly sulsets are to be chosen
(from a given family of subsets) so as to span the original set of
elements at :uinimal total cost; if the selected subsets are also to
be disjoint, it becomes a problem of "set partitioning." See
(Garfinkel and Nemhauser, 1972b, 1972c} and (Balas and Padberg, 1976)
for surveys of methods and rzferences; (Marsten, 1974) reports recent
computational experience.
These set covering/partitioning models can be applied to a variety
of discrete selection problems. Perhaps their most useful application
to date has been to the problem of scheduling airline crews tc "cover"
a flight schedule at minimal salary, living-expense, and "deadheading'
costs, subject to various restrictions on work-and-rest times, company
and union requirements, eic, The total problem is quite compiex, and
a variety of approaches have been proposed at intra-iadustry meeetings;
a convenient summary is in (Arabeyre, Fecarnley, Sterger and Teather, 1969).
Another highly visible use ui integer programming is in the problem
of deterwioing political districts so as to achieve equity in terms of
absolute Jdeviations of district population from an overall mean. Minimiz-
ing the sum of such deviations over zll districts is 2 set partitioniag
problem; if the objective is to minimize the largest of such deviatious,
we have a "bottlenmeck problem"” for which a branch-and-bouné procedure
has been tecsted on a state distincting problem with 40 indivisible popuia-
tion units. (Garfinkel and Nemhauser, 197Q). A re’ated political
topic is the problem of determining a fair apportionment of representa-
tives vecween political units; Balinski and Young has developed

a new "qucta cethod" using integer programming ideas, and have applied

it to the U.S. Congress (197,) and the European Parliment (1976).

© e et e
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Firally, no discussion of combinatorics would be complete without
a discussiun of new resuits on computational complexity. There are
certain problems, such as maximal-fiow, shortest-route, assignment, and
minimal spanning-tree problems, where one can guarantee that the number
of solution steps is less than some polynomifal function of the problem
parameters; i.e., a "polynomial-time~bounded algorithm" exists
{Edmonds, 1965). Using modern concepts of algorithmic analysis (see,
e.g. (Aho, Hopcraft and Ullman, 1975)), Karp has shown that a variety
of other combinatorial problems are equivalent in the sense that if
any one of them can be solved, then there is a polynomial-time-bounded
transformation which will solve any of the others; it follows then that
all or none of the members of this NP complete class" are solvable
in polynomial time (Xarp, 1972), (Karp, 1975). This class ic quite
wide and contairs the travelling-salesman, integer-linear programming,
knapsack probtless, znd set covering and partitioning probleme; since
all of these are computationally difficult, we suspect that none of
this is po:s..,mial-time-bounded. Of couvrse, this does not mean that
there csanu.! be efficient algorithms for modarate~size problems, or

even that an "average” problem cannot te solved during a time which is

a polynomial function of its size, as we have seen. In fact, many hauristic

algorithns have already been surprisingly succeesful in solving actual

combinatorial problems. An exciting new line of research is now trying

to quantify this success by looking at the proximate success o% heuristics

on distributions cof problem parameters; £n many cases one can guarantee

that all but small perceantage of such problems will be optimally solved

by a fast algorithm (Karp, 1976).
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8. DYNAMIC PROGRAMMING

il
i

Dynamic programming is not so much a method of optimization as it is
a framework in which to efficiently analyze loosely-coupled, repetitive
decision problems. Typically, these problems arise in dynamic models (or
serial processes) wnere the decisions made at one instant (or stage) give
rise £o a similar problem at a later time (the next stage), in which a
parameter or the statz of the system has changed.

A typical model is the resource allocation problem, in which activity
j , operating at level xj restricted to some set of values Sj » Uses up
an amount aj > 0 of resource, and generates revonue rj(xj) N
G =12, ..., ) . Assuming there are B total units of resource, the

global optimizaticn problem is:

j=1 =
N
(8.1) z a.x, <B
1= i3 -
J
xj € Sj G =12, ..., ¥) ;

If the return functions are linear, and Sj is an interval on the real
line, this is a simple l.p.; more general problems require special handling,
even with just one constraint. In the dynamic programming approach, we
solve the problem in stages, usually beginning with the last., Let fn(b)
be the optimal return from the Nth activity, assuming b units of resource

are made available to it; this is got from the simple optimization:




which is solved paramatricalily, for all values of 0 <b 2B . Knowing
fN(b) (and having recorded the optimal decision x;(b)) s We now proceed
to the determination of fN_l(b) —~the untimal return from the last two
activities, assuming b units of resource are available for both. Since
activity N - 1 uses up aN-l of this resource, we have again a one-

dimensional optimization:

Ego1®) = Max ry Ggp ) * Ey( - 2y p%e-r)
@.3) -1y <P

X1 € Sy

which is solved parametrically for 0 <b < B . This process is carried
out successively for all preceding stages until solving fl(b) for b=8
gives thc optimal total return. Note that the optimization difficulty is
reduced to that of a one-dimensional problem, but that, in exchange, a
sequence of optimal returns (and policies) must be stored for all values of
b . Thus, large dynamic programs are typically storage-limited, and it is
difficult to adequately handle problems with more than 2 or 3 linking
constraints. In other formulations, the result of one stage's optimization
is to leave the system in a different abstract state (such as location and
position in space), rather than with a diminished scalar variable; here the

YeLrse of dimensionality" requires one to quantize the state space rather

grossly to get an initial approximation in reasonable computation storage,

.
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and tiicn to successively refine the space (Larson, 1968). Berteld and
Brioschi (1972) have analyzed nonserial models which require a diiferemnt
kind of successive approximation. Dirickx and Jennergren (1975) examine
myopic policies.

The cbservation that many dynamic models could be ~educed to a series
of one-stage parametric problems is due to R. Bellman, who called it an
optimality principle: "An optimal policy has the property that, whatever
the initial state and initial decision are, the remaining decision must
constitute an optimal policy with regard to the state resulting from the
first decision." (Bellman, 1957). A variety of different formulations
which use this principle can be found in the still-useful texts (Bellman,
1957) and (Bellman and Dreyfus, 1962).

Despite their inherent limitations, dynamic programs are extremely
useful for problems of moderate size, or as subroutines in larger problems.
The premier example of this is the cutting stock or trim problem, thoroughly
investigated by Gilmore and Gomory (1961), (1963), (1965), (1966). Imagine
thze ar order for different numbers of different lengths is to be filled by
cutting from a number of larger, standard lengths; the problem is to mini-
mize wastage of stock. If the size of the order is large, an upproximate
solution can be found by using a linear program in which the variables are
211 the different possible patterns of cutting the standard lengths. Instead
of enumeratinz (the combinatorial aumber of) all such patterns, Gilmore and
Gomory generate new candidate patteras by solving a related "knapsack
problem," which i3 the pame given to (8.1) when the returns are linear,
rj (x,) = rj *» x, , and the variables arz integer, Sj = {0,1,2, ..., uj} .

3 k|

In this way, they alternate between linear and dynamic programs to solve a

complex problem with many indus~rial applicatious.
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The knapsack problem is an important model in its own right, both

because of its usefulness as a building-~block in realistic packing sliiuva-

tions, und because of its deceptive simplicity. For example, 1if the

activities (items to be select-d for the knapsack) are arranged in de-

creasing ordex r

llal > rzla2 > ... (decreasing value per unit resource

(space or weight) consumed), and if xj can be fractional, O :_xj f.uj R

then the solution is trivial: take x = Min (ul,Blal) 3 Xy =

Min (uz,(B - alxl)/az) ; etc. It might be thought that i. “greedy"

algorithm migat also extend tc the integer case by making the obvious

rodification in the 2nd term; unfortunately, this is only true for very
special data sets {Magazine, Nemhauser and Trotter. 1973), and we know that
the general knapsack problem belongs to the potentially difficult NP-
complete cisss of problems. Many other integer programning methods, such
as cutting~plane and branch-and-bound algorithms, have been proposed
(Garfivnkel and Nechauser, 1972s).

Dynaoic programming is also useful as a theoretical tool, in proving
the cptimality of certain forms of decision, rather than assuning the form,
and rerely setting the control peraceters optimally. Perhaps, the nost
inportant resual. of this kind was the prooi that two-bin inventory control
policy was optimal urder certain cost and dewand assumptions (Arrow, Karlia
and Scarf; 1958). Also, ope can often show that dynamic optimization
problens in operations research have a limiting behavior, in vhe sense that,
as the planning horizon increases without limit, the opzimal total return
may be bounded in value (if returns discounted over time) or be bounded by
a2 livear function of tire {if undiscounted), and the optimal decision cay
be stationary; the uptirmality principle then becomes a cecursion relation-

ship which can be solved iterarively. A well-studied exasple of this is




the model of Markov programming, in which a decision z, take a process in

state i at time t into state j at time ¢t + 1 with probability

?ig,g%b)_lgEQ?BEE&.&IE&EM-'*i‘ij{"ﬁé‘\l“”;“("fij""“i?z‘s ey Ny (t=0,1,2, i..)

thus, if the policy is fixed for all t , the process follows a Markov chain,
and the mean total reward is asymptotically proportionmal to t . Many
interesting decision problems can be formulated in this framework (Howard,
1960) and there are numerous extensions (Jewell, 1963), (White, 1969),
(Mine and Osaki, 1970). 1If z, is a discrete control action and N 1is
finite, this problem can be solved a number of different ways, including
linear programming. Problems with continuous decision and state spaces
requires a certain amount of delicate analysis, and here we must say that
the theory has far cutstripped the applications (Porteus, 1975).

Interesting applications of dynamic programming are appearing regularly
in the literature, particularly in various investment and consumption
(Hakansson, 1970), allocation (Derman, Lieberman and Ross, 1975), and

"stopping" (Leonardz, 1973) models.
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9. _CONTROL THEORY

There is an intimate relation between the theory of dynamic programming
and recent developments in control thecry, which may loosely be described as
optimization of a system of differuntial (or difference) equations. A sur-
vey of this area would take many more pages, and we content ourselves with
references to {Bellman, 1967, 1971) for a dynamic programming presentation,
and to (Canon, Cullum, and Polak, 1970) and (Luenberger, 1972) for discussion

of the interaction with mathematical programming.
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10. MULTIPLE OBJECTIVES AND DECISION-MAKING UNDER UNCERTAINTY

Analysts have long realized that optimization of a single fixed objec-
tive is not responsive to the needs of decision-making in the real world,

where many different conditions influence chkoice. It is of course possible

to explore several different objectives simultaneously to evaluate trade-offs;
this is especially easy in linear programming with only a few conflicting ob-
jectives (Zeleny, 1974). However, the general problem is quite difficult,
since the decision-maker may not be able to define his preference space pre-
cisely until faced with actual comparisons. A variety of different mondels
may be found in (Cochrane and Zeleny, 1973); (Roy, 1971) is a synthesis of the
different methodologies.

Somewhat the same problem arises in decision-making under uncertainty
(Hertz, 1973). In some instances, one can justify a single objective, such
as maximizing a mean value or the probability of gaining a fixed sum. Usually,
however, several aspects of the distribution of outcome seem important; for
example, in the E-V approach of Markowitz (1959), one examines the trade-off
between mean and variance. More generally, the problem is one of comparing
two distributions. Some results can be obtained through ideas of stochastic
dominance, but the preferred appcnach seems to be through utility theory, as
developed by Von Neumann and Morgenstern. Given a choice between several
distributions of random outcomes {pi(x)} , their result states that, given
three reasonable hypotheses which a Rational Economic Man might follow when
constructing preferences among these gambles, the prefersnces can always be
represented in terms of a nondecreasing utility function, u(x) , idiosyn~
chratic to the decision~maker, by ranking the distributions eccording to the

h

expected utility of the it gamble, Ui = j'u(x)pi(x)dx . Tnis approach is

well-explained in (Borxch, 1968) (White, 1969) (Raiffa, 1970). Although there

have been numerous objections to utility theory (for example, an E-V decision-




maker does not satisfy the hypotheses of the theory), it seems very difficult
to modify. And, it does satisfactorily explain certain observed behavior,
such as paying a premium over the mean loss (profit) for insurance (a lot-
tery ticket) iIf one is risk-averse (risk-seeking). There has been a great.
deal of attention to the problem of defining multi-attribute preferences,

and ihe construction of an overall utility function; ({Keeney and Raiffa, 1976)
is the definitive text.

Utility theory finds usage in the models of "decision analysis”, a new
guise for statistical decision theory which emphasizes the formal process of
laying out a decision tree, the estimation of the probabilities .associated
with nature's plays, the estimation of the utility of the terminal outcones,
and the use of Bayes' law and dynamic programming to calculate optimal stra-

tegies. (Raiffa,1970) Decision analysis 1s particularly useful as a pedagog-

ical framework, and as means of structuring communication between the analyst
and the decision-maker. Suggestive appiications appear in (Grayson, 1960)
(drilling decisions), (de Neufville and Kenney, 1972) (airport developmert),

and (Hax and Wiig, 1976) (capital investment).
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11. STOCHASTIC PROCESSES AND MODELS

Much of the early literature in OR was devoted to the study of random
processes, both becausc of rapid developments in the 50's, in communications
theory, but also because it was not usual to be trained in this area. Now
the situation is reversed; we take for granted that the OR specialist has had
at: least two courses in stochastic processes, and there seem to be few useful
new theoretical developments. (Qinlar,1575b) is an example of a modern theo-
retical text.

The most ubiquitous model is, of course, the Markov prccess, especially
in its discrete-time, discrete state-~spice version, the Markov chain. 1In
about every field of application, one can find a Markov chain, possibly im-
bedded in a more complicated process (Kendall, 1953), used to describe suc-
cessive transitions between states. In a certain sense, it represents the
first order of dependence up from a purely independent-transition process,
and its wmodelling success is due to the fact that higher order dependencies
are rarely needed. The properties of Markov chains have been well-understood
for twenty years, thanks to the still excellent book by Feller (1967).

The other useful model is the renewal process, which describes point
processes as generated by independent, identicully distributed random in-
tervals; this is an obvious model in reliability, where failed items are
immediactely replaced by new, similar items, but is also useful as a model
for other processes, such as arrival of customers at a queue. (Cox, 1962)
is a good introduction to the field; the full generality of renewal argu-
ments and the various limit theorems are covered in (Feller, 1971).

By combining Markov chains and renewal theory, (so that a transition
between two states i and j takes a random duration sampled from a dis-
tribution depending on 1 and j) , we obtain the very useful Markov-re~

newal (or semi-Markov) processes. The theory is only mildly more complicated,




and subsumes many early elsborations on the basic processes. (Ginlar,
1975a) surveys the field; (Teugels, 1976) is a bibliography.

The other important extension to these basic theories is the addition
of economic functions, cailed rewards or potentials, for use in optimization.
For example, if a transition between states i and j took t units of

(t) at the end of the interval, and

time, we might generate a prefit r

3

add it to other rewards earned from previous transitions. The mathematical
details are easy, and are already being included in introductory texts (Ross,
1970).

Other stochastic topics, such as random walks, branching processes and
diffusion processes find special uses, particularly in queueing theory
(Gaver, 1968) (Newell, 1971), and in attempts to model stock market behavior

(Fama, 1970), but few other applicationms.




12. QUEUEING THEORY

The: study of congestion in service systems was very popular in
the '50s and '60s. Although the basic modelling had been carried out
many years previously by A. K. Erlang, and others, for problems of
telephone traffic, the subsequent development of queueing theory
showed the essential similarity between congestion and waiting-time
phenomena in such diverse applications as reoad traffic control, inventory

management, delays at toll booths, health care appointment systems,

In an extensive bibliography, Saaty (1966) claims that there are by 1966

over 2000 references in queueing theory, and comments that real improve-

ments in managing congestion phenomena do not match the congestion

caused by the nuunber of theoretical papers on the subject; Lee (1966)

is also pessimistic. Bhat (1969) refutes these arguments in a con-

venient summary o: the field, and gives a more selective bibliography.
In the prototypical queueing problem we imagine thac customers

1,2,3, ..., n, ... arrive at a service system at points in time

tl,tl + cz,cl +t, + s »ees (cl + oty oo cn), ++. , 3nd queue up in

front of a single server, who will process ther individually, taking

$1359sS3s reen Sy cen units of time. We additicnally specify FIFO
(first~in, first-out) service pricrity and assume the server begins
work as soon as a customer arrives. If we let vy be the waiting
time in the queue of the nth customer and assume that the first customer

arcives when the server is idle, we find:




1
w, = max (sl - t2,0)
(12.1)
w = max (wn_l + Sl ” tn,O) .

One can also describe, e.g., the number in the system found by the
nth arrival. Equations similar to these could, in principle, be found
for other variations in service priority, if the number of servers
were increased tor m (in parallel), if there were serial stages of
queues (with or without intermediate queues), if service was in batches,
etc., etc.

The typical analytic assumptions about the input and service
processes are that the arrival spacings {cl,tz,t3, ceey tn’ oo}
are independent and identically distributed random variables (thus
arrivals constitute a renewal process), and service times
{31‘52,53, ey S5 ...} are also i.i.d.r.v.s , with a different
distribution. In spite of the simplicity of formulation of this

so-called "G/G/1" queue, ounly a few general results are known:

(1) Statistical equilibrium is achieved if and only if the utilization
factor, p = s/t (E,E - mean service and inter-~arrival times),
is strictly less than unity;

{2) The fraction of time the server is idle is 1 - p ;

(3) The customer-average mean waiting time in queue, W , and the time-

average mean number of customers in the queue, q , are related by:

q = w/t .




Equivalents of these results hold under more general condit.ons, for example,

if there are m parallel servers, or if a diff.rent: priority scheme is used.
(3) is a very general result which essentially defines what we mean by cus-
tomer-average wait and time-average queue (Little, 1961}, (Jewell, 1967},
iEilon, 1969), (Maxwell, 1970). Extensions are (Stidham, 1972), (Brumelle,
1972).

Further general results seem very difficult. The basic problem is that

nth delay content, u, = s is a two-sided random variable; as long

n tn+1 ’

as the partial sums U 5 Uy + Uy +.. are positive, they are identically
WosWas eee o However (with probebility one, if p < 1) , for some k ,

+ u, T oees + u, will be negative, w = 0 , and the process starts

k+l

over. The analytic determination of the distribution of k (the number

ul

served during a busy period) and i = Iul +u, + ... + ukl (the length of
the next idle period) seems very difficult in the general case; but, if

they could be determined, we could obtain G/G/I results, such as:

_ i+l @®a-n? 2
(12.2) = ; Ji
2¢(1 - p) 2i

2 2 .
where o, and @, are variance of the inter-~arrival and service r.v.s,

and 1 s 12 the first twoc moments of idle time (Marshall, 1968a). Alter-
natively, we must find the distribution of w from a Wiener-Hopf integral
equation.

The most popular historical way around these difficulties has been to
use e2xponential inter-arrival (Poisson arrival) and exponential service
distribution assumptions. Because of the "memoryless" properties of the
exponential, Pr {x > %, +h | x> xb} = Pr {x > h} , every interval of

time is a regeneration point, and queueing systems can be described in terms

of continuous-time Markov processes, and solved by linear systems of first-




e

order "birth~and-death" differential equations. This approach erables us
to model unlimited variations, such as different queue disciplines and
priorities, balking and reneging, interrupted, blocked, and controlled ser~
vice, serial ard parallel stages, etc. Arbitrary distributions can be ap~ 'i
proximated through sums or mixtures of random variables. Morse (1958) has
many useful models of this type.

Kendall (1951), (1953) was the first to shuw that only cne of the
Inter-arrival or service distributions need be exporential to complete the
analysis. For example, in the case of Poisson arrivals, 1 dis distributed

3 as t , oi = (E)2 , and (12.2) reduces to the Pollaczek-Khintchine formula:
(12.2)

If service times are exponeuntial, one can analyze an imbedded Markov chain,
even with m servers; see, e.g., Kleinrock (1967). Unfortunately, the as-
sumptions of exponentiality led naturally to the use of transform methods,
and the papers of the '60s are vuverburdened with the machinery of LaPlace
and Fourier.

Some of the most interesting recent research in queueing theory has
been in the area of approximate and bounding results, especially to the
moments of the waiting-time distribution. Kingman (1962b) showed that j

(12.2) has the strict upper bound

e
(12.3) W< — =V,
2e(1 - p)

for all GI/G/1 queues, and that this hound is a good approximation for w

in heavy traffic (p + 1) , when w 1is then approximately exponentizliy

P distributed (1962a) (1962b).

Lay
Ly, -




Finding a strict lower bcund in terms of moments is more difficult.

Marshall (1968a) makes some additional shape asszumptions on the distribu-

tion of t and gets sharp lower bounds. For example, if E{x - X, I X > xo}

is decreasing in X (decreasing mean wait for the next customer as a fupc~

tion of clock time since the last arrival), he obtains

(12.4) w - ELre) o

which bounds gq to within one customer! Other single~server variations are

in (Marshall, 1968b).

Bounds for the G/G/m queue are given by Kingman (1970) and Brumelle

(1971), and have been improved for certain special cases; a convenient sum-

mary is in (Kleinrock, 1976). Finally, we should mention the large amount

of unpublished work on approximations for single- and multi-server Poisson

queues (Marchal, Gross, Harris, 1974), (Nozaki and Koss, 1976), (Takahashi,
1976), and the growing interest in estimators (Law, 1975).

A valid criticism of all the above models is that they are only useful
in stable regimes; time-varying parameters and transient response are diffi-
cult to analyze, except in the simplest systems. However, a growing litera-
ture in queueing theory begins by approximating the arrival and deparzure
processes themselves, making first a deterministic "fluid" approximation to
the average values of these processes, and then adding a second~order “dif-
fusion" approximation. Gaver (1968) has .nvestigated diffusion approxima-
tions to the M/G/1 queue, and Newell (1968), (1971) has written extensively
on "rush hour" traffic, when the system is overloaded for a period of time,
and then recovers. Although the concepts are simple, the analysis leads to
Fokker-Planck diffusion equations, and requires care in arguing the limiting

approximations. Kleinrock (1976) contains a clear survey of diffusion models;

Whitt (1974) covers recent contributions to limit theorems.
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Perhaps the most interesting new application of queueing theory has
been in the field of computer time~sharing systens. Kleinrock (1976) con-
tains an excellent description of the analytic and heuristic models developed
to unalyze multi-user priority schemes and design computer communicatioa net-
works. The challenge of working with & complicated real network (ARPANET)
has clearly provided a fruitful interaction between queuveing theory and prac~

tice.
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RELIABILITY THEORY

The early models of reliability theo;y was primarily of series-parallel
connecticns of elements with exponential lifetimes. However, sineg the early
‘60's there has been a rapid expansion around two new and important concepts. '
The first is the thecry of coherent structures, which provides a general
framework for analyzing systems of unreliable elements. The second idea
is to assume certain monotone shape properties of the lifetime distributions

(increasing failure rate and rate average, increasing mean residual life,

W e e em e

“"new better than used," etc.) to bound complex system performance measures,
and determine optimal replacement policies (Barlow and Proschan, 1965, 1575}, i
{(Proschan, 1976).
Current research topics are surveyed in (Barlow and Proscham, 1975).

0f particular interest are a successful multivariate geuneralization of the
failure rate (Marshall, 1975), increased interest in Bayesian models (Tsokos,
1977), and the use of fault trees to systematically develop failure modes in
complex systems, such as nuclear reactors (Barlow, Fussell, and Singpurwalla,

1975).




14. FORECASTING AND BAYESIAN STATISTICS.

There are two developments in statistics which are influencing the
methodology of operations research. In the empirical forecasting of time
series, the ARIMA (auto-regressive integrated moving-average) models of Box
and Jenkins (1970) provide an economical framewnrk in which to id=ntify rea-
sonable underlying mechanisms and carry out the necessary computations. The
theory also puts older exponential-smvothing heuristics on a firm basis.

The other development has been the so-called Bayesian revolution. Sup-
pose we have some prior information about a random parameter 6 (the inputs
or control settings in a certain process, or the physical or economic condi-
tions surrounding a certain experirment, or the skill of a2 himan operator,
etc.) which we can surmarize in a prior density, p(6) ; and suppcse, for
every possible value of & , we know the "likeiihood", p(x | 8) , the con-
ditional density of observing a diSferent random value, x , during some well-
defined experizent. By the use of conditional expectation (Bayes' Law), we
£ind that, posterior-to-observing the sample value x = x, » we can redefine

our krnowledge about @ to obtain the posterior-to—data density
(14.1) p(6 | x) =kp(x, | &) -pCO) ,

where k is a constanc to normalize p(8 | xo) . The current contrsversy in
the statistical community seems to sten not fron (14.1), but froa whether a
consulting statistician is permitted to have any personal beliefs about &
to include in the prior, p(6) , or whether he nust devise methods to let
the data soczehow "speak for itself" (Savage, 1962) (Barnett, 1973).

This is hardly a crisis in operation research systems analysis where
the ability to draw on prior experfence and analogous situations is permitted,

nay, encouraged in estimation procedures. Hore ixzportantly, the Bayesian ap~

proach reveals garzdoxes in the classical sacpling-theory school of statistics




(Lindley 1972, 1975), (Basu, 1975), and in spite of various attempts to re-

concile the two approaches, such as the use of diffuse priors and "empirical
Bayes” techniques, it seems as if the basic samplia -theory ideas, such as
point estimation, significance testing, and confidence intervals, must be
reformulated. (Houle, 1973) gives about 2000 references in Bayesian sta-
tistics; many new references regularly appear in O.R. journals.

Motivated by estimation problems in insurance, the author has teen in-
terested in Bayesian prediction schemes, particularly the estimation o” the

mean value of a future observation posterior-to~data, viz:
) iy = 3
(1&.2) Ex | x,} j:,xp(x | 8)p(e | x,)dxde ,

which represents the "experience-rated fair premium" in insurance terms.
Actuaries noticed that, for many priors p(8) and likelyhoods p(x | &) ,
(14.2) was linear in the data X3 this is true even for nonnormal families,
and the general couditions under which this is true are now known, and have
been extended to the multi-dimensional case (Jewell, 1974).

In more general forecasting and regression schemes, the Bayesian mean
may not be linear intne data; however, one can easily find the best linear
approximation through the use of least-squares theory. This field is re~
ferred to as "credibility theory" in the actuarial literature (a survey is
in (Jewell, 1976)), and is clesely allied with "linear filter theory" in

the communications field (Sage and Melsa, 1971). (Aitchison and Dunsmore,

1975) analyzes other Bayesian prediction schemes.
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15. INDUSTRIAL AND MANAGEMENT MODELS

This section will briefly survey some of the recent trends in business
models. The growth and influence of systems ideas over the last twenty
i years has been tremendous, and scientific management is now a fact of life
in all kinds and sizes of industries.,

Inventory control was already a mature field by the 60's, following the
development of the basic statistical models (Arrow, Karlin, Scarf,1958)
t? (Scarf, Gilford, Shelly, 1963). Since that time, the emphasis has been on

making the models more realistic and extensive. (Gross and Schrady, 1976)

is a recent summary; see also the forthcoming book by Silver and Peterson :

(1977). (Muckstadt, 1973) describes a large-scale application.

Turning to the production side, an important new trend has been the de-

velopment of integrated systems for production planning, scheduling and in-

.
TR ———]

ventory control (Hax and Golovin, 1974) (Hax and Mead, 1975) (Hax, 1976b).

-

(Bitran and Hax, 1976) The problems of logistics, including plant leccation
and distribution, have also been the subject cf recent intensive investiga-
tions (Eilon, Watson-Gandy, Christofides, 1971). (Francis and White, 1974)

(Geisler, 1975) (Geoffrion, 1975) (Marlow,1976) See especially the survey

by Hax (1976a). Multilevel analysis is described in (Jennergren,1976).

R e AL ety o b bt s et o m

Marketing, on the other hand, is an area which only recently has been
quantified, apparently with success. Kotler (1971) provides a comprehensive
survey; recent articles of interest are (Little, 1975) and (Hauser and Urban,
1976).

In the area of project management, the most important development of the
60's was in scheduling, using the critical-path methods developed for the
Polaris missile program and the construction of the $.S. France. The basic

models belong to the network class of linear programs, have very simple

algorithms, and are now voutinely used in all major construction projects




(Thornley, 1968) (Moder and Phillips, 1970) (Lombaers, 1969). Since that time,

attention has been directed towards the resource-loading problem - an inher-

ently difficult problem which is of the NP-complte class (Herroelen, 1972)

is a convenienf survey. (Shephard, Al-Ayat, and Leachman,1976) is a differ-

active area has been i the selection and budgeting of research and develop-

i

i

|

ent modelling approach, using dynamic production function theory. Ancther g
!

i

|

3

j

‘nent projects (Gear, Lockett and Pearson, 1971) (Gear and Lockett, 1973)

(Niaslund and Sellstedt, 1974) (Baker and Freelsnd, 1975). The problems of de- !

tailed manpower scheduling are also of continued interest (Bennett and Potts, }

1968) (Arabeyre et al, 1969); Bedin (1972) gives a general model. (Baker, 1974)

(Coffmen, 1975) use recent works on job/shop scheduling and sequencing.

Finally, the most explosive management science area in the past decade

has been the field of investment and finance. Following the pioneering idea

of Markcowitz (1959) to seliect a portfolio of investments as a trade off be-
tween mean return and variance, many different extensions have been made in

an attempt to improve investment performance; see (Franciz and Archer, 1971)
(Sharpe, 1971) (Lorie and Brealey, 1972). Part of the problem may be that the
stock market is too efficient a process for a computer to make money, at least
in the long run (Fama, 1970) (Granger and Morgenstern,1970). The optimal de-
sign of bond maturity schedules is, however, a more tractahble problem (Bradley
: and Crane, 1975). Money managers are also using linear programming and other

i methods to reduce or increase "float" (Calman, 1968) (Orgler, 1i870) (Orr, 1971).
A bibliogﬁfphy of 3,600 works in the finance and investment area is in

(Brealey and Pyle, 1973).
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16. THE INFLUENCE OF O.R. METHODOLOGLES

Since other speakers at this meeting will be describing various appli-
cations of operational research/systems analysis, I would like to describe
another process which has not been widely noted--the influence of 0.R. mztho-
dologies upon other disciplines, particularly in research and teaching.

For example, we are so used to talking of the uses of mathematics, it
is easy to overlook the stimulus that linear programming has given to the

study of convex polytopes, solutions of inequalities, discr2te mathematics,

and graph theory. Linear algebra, including a brief introduction to linear
programming, is now taught to all engineering freshmen and math majors at my
university; simple graphical-solution linear programs even appear in high
school "new math" courses. New algorithms, based upon the complementary pivot
theory of usathematical programming, give promise of providing practical calcu-
lation of fixed points-—an achievement which will find wide application in
both pure and applied mathematics (Karamardian, 1976) (Saigal, 1976).

Scarf (1+73) has already applied these fixed-point algorithms to the

computation of economic equilibria--a difficult problem which has heretofore

eluded econcmists for even modest-sized problems. Duality theory, with its
concepts of Imputed values of resources and of "pricingout" inefficient ac-
tivities, has proved a fertile field for quantifying basic econromic notions
such as marginal costs. Large-scale economic plannirg and optimization is
now possible or a scale undreamed of tuenty years ago, thenks to modern
linear programming codes. Production function theory has changed dramatic-
ally (Shephard, 1376). New tewms, like trade-off, cost-benefit analysis, sub-
optimizatlon, efficient frontier, and decentralized control are universally
used and understood.

In statistics, the various interesting problems posed by dynamic pro-

gramming, decision analysis, Markov programming, etc., wodels havecertainly




stimulated research iun statistical decision theory, gambling systems, mar-
tingales, potential theory, limit theorems in renewal theory, and so forth.
The concept of monotone shape characteristics for distributions, introduced
in reliability applications, has provided a new approach to bounding mo-
ments in random walks. And, the many possible variations in queueing models
has provided a torrent of marginal contributions to the statistical journals,
muchk to the concern of the editors (Pyke, 1975).

I have already described the changes in almost every field of business
administration; the same can be said about industrial engineering. The
methodologies have also been adopted by electrical engineering, especially
in control theory and in communications network design, as described earlier.
Transportation engineering relies heavily upon queueing theory, network flows,

dynamic programming, etc. (Gazis, 1976). Critical path scheduling is taught

routinely in construction engineering. Statistical models of wear are useful
in metal behavior studies. Dynamic programming is used for nuclear fuel
management, and fault tree analysis to isolate nuclear reactor shutdown se-
quences. And so on.

A variety of new sister disciplines have sprung up which also use
0.R. methodologies, as a glaince at the new journals will reveal: urban plan-
ning, environmental engineering, energy analysis, health care systems, etc.

And especially in computer science it is possible to trace the influence
of O.R. methodologies: from queueing theory for the design of computer sys-
tems, through graph theory and combinatorics for the design of efficient data
structures and manipulation procedures, to the common concerns for develop-
ing, testing, and implementing efficient algorithms (Aho, Hopcraft, and
Ullman, 1975). It seems to me that there is a certain amount of tension just
now between O.R. and this newest engzineering scilence discipline, caused in

part by the shift in popularity and research support, but also by the reali-

zation that problems of algorithmic efficiency have become too esoteric for

the O.R. analyst, and require the attentfon of a different kind of specialist.
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17. CRISES WITHIN THE PROFESSION

This tremendous activity and expansion in the field of operational .
research/systems analysis has, however, been achieved at the cost of
congiderable disorder within the profession, as the discussion sections
of the journals and the conference roundtable discussions reveal; see the

references in Klein and Butkovitch (1976).

The first crisis is over the incredible proliferation in papers and
3 specialty journals. ORSA/TIMS conference dimensions are staggering, as

are the numbers of regular meetings of numerous special-interest groups

and new specialty societies. Kendall (1960) estimates that, in 1958, one
would have to scan five journals to cover 1/3 of the English-language
contributions and abour 18 jouxnals to cover 1/2 of the literature; my
estimate of the current situation, based upon scanning our university
libraries, is that about 15 and 50 journals, respectively, would be needed
in 1976. Even traditional journals have fissioned into several parts.
One wonders what libraries can afford to stock them all, or how many people
have "xerox subscriptions."” Some will say that this proliferation is the
direct result of the "publish or perish" promotion criteria of American
universities; others point tc regulations requiring one to present a paper
to secure travel support tc a technical meeting. But it Is clear that this
cormunication explosion is affecting other sciences as well and there is
no easy solution in sight.

With this proliferation has comes increasingly narrow specialization,
which we see in academia when students insist they want o maior in mathe-
matical programming or queueing theory, and the faculty advisors permit them

: to do so. Klein and Butkovitch (1976) suggests daxkly thav this is a natural

phenomenon, since the OR/MS academic discipline is an institutionalized




system of exchange which sets up modular specializations in -order to insure
its own survival; they see little hope for institutional change.

Another crisis, perhaps more pertinent to the U.S.A. than to the U.K.,
has been the apprent separation between theory and application. Practi-
tioners regularly rage at the mathematical "overkill" in the pages of the
journals, and yearn for the pood old days when a simple model could
explicate an observed phenomenon; in rebuttal, researchers point to the
trivial level of many of the applications papers ("How I ..."), and the
universal lack of sponsorship by industry of meaningful research programs.

There are continuing criticisms of the academic programs (Schrady,
1976) which imply that OR/MS training is not respunsive to the needs of
industry - being too technique-oriented, over-specialized, having little
understanding of the total systems approach, unable to collect and organize
data or write management reports, and so forth.

Putting these tensions all together, adding the success of new fields,
such as computer science, and contemplating the rapid rate of adoption of
0. R. methodologies by the applications fields (business; economics; trans-
portation, environmental, and communications engineering, etc.), has led
to a larger malady, which might be called a crisis of confidence. We see
this in the searching self-examination of many of the roundtable dis-
cussions ("Is Mathematical Programming Moribund?", "Are We Gambling on
OR/MS Education?”), and in statements tc the effect that operational
research has promised too much, delivered too little, and should now be

given a decent burial.
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' 18. FUTURE PROSPECTS

I prefer to take a somewhat more balanced view of these crises. For
example, there is evidence that, in the U.S., the societies are moving to
correct some of the earlier excesses. ORSA and TIMS have been growing more
closely together, running simultaneous conferences, and sharing membership
administration facilities. Their publication policies have alsec been

coordinated and rationalized: A new journal, called Mathematics of

Operations Research, has been established to attract importart theoretical

articles. Interfaces has been designated as the new joint madium for
describing operational problems of !mplementing or using OR/MS; the quality
of articles is improving under the new editor, who insists that all
articles be readable and that equations be relegated to the appendices.

The parent journals, Operations Research and Management Science, are now

free to concentrate on major articles of interest to all members cf the
profession.

Another interesting development has been the sponsorship of a prize
competition for papers on successful applications of MS by the
TIMS College on Practice (Interfaces, Vol, 6, No. 1). The rzules are strict:
the entries must report a completed, practical application and must present
rescvlts that have had a significant impact on the performance of the
organization under study, as certifizd by management. Because practitioners
do not normally publish such studies, the prize is set at a significant level
($6,000 for the 1977 competition). The actual presentations and the written

papers are extremely interestirng, in my opinion, and provide a standard of

professional practice previously unavailable.
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There are no easy solutions to the publication explosion proolem,
although de-emphasis of published works as a university promotion criterion
would certainly help, as would resolution of some of the legal and institu-
tional problems surrounding the inexpensive duplication and distribution of
papers. I believe in market mechanisms and the freedom to fail; journals
which do not serve some useful purpose will soon vanish from the scene.

Whe is to question the utility of those which survive?

Academic programs are easily criticized, but one must remember that
there were few texts or courses before 1960, and new programs had to be

grafted onto a variety of different educational fommats. It is true there

DR P

has been a great deal of theoretical activity relative to the actual appli-
cations, but this is the characteristic of "no- .al science" (Kuhn, 1970),
whose first priority is to structure the appropriate and potentially useful
knowledge and explore its theoretical facets. '"Few people who are not
actually practitioners of a mature science realize how much mop-up work of
this sort a paradigm leaves to be done or quite how fascinating such work
can prove in the execution" (op. cit., p. 24).

It is also true that our recent gradvates, now staffing industry,
government and other teaching faculties, have over—emphasized technique in
place of application, and did not participate in the same school of hzrd
knocks and simple models that reared our founders. But the same can be
said of any profession. These young people are extremely bright, and, I
believe, more adaptable to new demands by society than many of the tired
ploneers. Ao far as teaching the systems apprcach is concerned, philosophy
is fine (Churchman, 1968), but what is needed are more excellent texts like

(White, 1975), and good professional articles, developing ideas like those
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in (Bishop, 1972) and (Liebman,1976). More consistent signals from research

funding agencies would help useful academic development, as would more

interest by industry in providing research problems and support, and helping

educational programs to make closer ties with reality.

OR academicians, on the other hand, must learn to let go of any
proprietary feelings they have about the methodologies they helped to
develop, and pay closer attention to the substantial issues facing their
field or primary interest, be it business, govermment, or iundustrial
engineering. The great strength of the profession has come from the
ability to construct interesting models of real-world phenomenon, and to
use the solutions to resolve actual problems. The outlines of the applied
methods are now clear for all to see, and, at some point, methodology
becomes pure mathematics or statistics or computer science, the concern
of other specialists. It is a mark of maturity that our methods are now
influencing other fields, and that the availability of these new support
skills frees us to return to the central issues of modelling and problem-

salving.
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